Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 270: 118997, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453249

RESUMO

Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.


Assuntos
Proteínas de Ciclo Celular/genética , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Animais , Antioxidantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Epigênese Genética/genética , Células Epiteliais/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Histonas , Rim/citologia , Rim/metabolismo , Glomérulos Renais/metabolismo , Masculino , Proteínas de Membrana , Estresse Oxidativo , Podócitos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
Front Physiol ; 9: 502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867549

RESUMO

Aerobic exercise training (AET) improves the reverse cholesterol transport (RCT) in cholesteryl ester transfer protein-transgenic (CETP-tg) mice. We aimed at investigating the role of AET in the expression of genes and proteins involved in lipid flux in the aorta and macrophages of CETP-tg mice. Three-month-old male mice were randomly divided into trained (T; treadmill 15 m/min; 30 min/day) and sedentary (S) groups. After 6 weeks, peritoneal macrophages and the aortic arch were obtained immediately (0 h) or 48 h after the last exercise session. mRNA was determined by RT-qPCR, protein levels by immunoblot and 14C-cholesterol efflux determined in macrophages. AET did not change body weight, plasma cholesterol, triglycerides, glucose and CETP activity. In macrophages, at time 0 h, a higher expression of genes that encode PPAR gamma, ABCA-1 and a lower expression of MCP-1 and IL-10, was observed in T as compared to S. After 48 h, lower expressions of MCP-1 and PPAR gamma genes were observed in T mice. Increase in ABCA-1, SR-BI and IL-6 and decrease of LOX-1, MCP-1, TNF and IL-10 gene expression was observed in the aorta of T compared to S mice (0 h) and LOX-1 and MCP-1 remained diminished after 48 h. The protein level of MCP-1 and SR-BI in the aortic arch was unchanged in T animals after 48 h as compared to S, but LOX-1 was reduced confirming data of gene expression. The apo A-I and the HDL2 mediated-cholesterol efflux (8 and 24 h) were not different between T and S animals. In the presence of CETP, AET positively influences gene expression in the arterial wall and macrophages of CETP-tg mice contributing to the RCT and prevention of atherosclerosis. These changes were perceptible immediately after the exercise session and were influenced by the presence of CETP although independent of changes in its activity. Reductions in gene and protein expression of LOX-1 were parallel and reflect the ability of exercise training in reducing the uptake of modified LDL by the arterial wall macrophages.

3.
Sci Rep ; 8(1): 8109, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802324

RESUMO

Little is known about advanced glycation end products (AGEs) participation in glucose homeostasis, a process in which skeletal muscle glucose transporter GLUT4 (Scl2a4 gene) plays a key role. This study investigated (1) the in vivo and in vitro effects of AGEs on Slc2a4/GLUT4 expression in skeletal muscle of healthy rats, and (2) the potential involvement of endoplasmic reticulum and inflammatory stress in the observed regulations. For in vivo analysis, rats were treated with advanced glycated rat albumin (AGE-albumin) for 12 weeks; for in vitro analysis, soleus muscles from normal rats were incubated with bovine AGE-albumin for 2.5 to 7.5 hours. In vivo, AGE-albumin induced whole-body insulin resistance; decreased (~30%) Slc2a4 mRNA and GLUT4 protein content; and increased (~30%) the nuclear content of nuclear factor NF-kappa-B p50 subunit (NFKB1), and cellular content of 78 kDa glucose-regulated protein (GRP78). In vitro, incubation with AGE-albumin decreased (~50%) the Slc2a4/GLUT4 content; and increased cellular content of GRP78/94, phosphorylated-IKK-alpha/beta, nuclear content of NFKB1 and RELA, and the nuclear protein binding into Slc2a4 promoter NFKB-binding site. The data reveal that AGEs impair glucose homeostasis in non-diabetic states of increased AGEs concentration; an effect that involves activation of endoplasmic reticulum- and inflammatory-stress and repression of Slc2a4/GLUT4 expression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Produtos Finais de Glicação Avançada/farmacologia , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Biomarcadores/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
4.
Front Physiol ; 8: 723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018354

RESUMO

Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM.

5.
Mol Cell Endocrinol ; 447: 116-124, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238722

RESUMO

Because of the paucity of information regarding metabolic effects of advanced glycation end products (AGEs) on liver, we evaluated effects of AGEs chronic administration in (1) insulin sensitivity; (2) hepatic expression of genes involved in AGEs, glucose and fat metabolism, oxidative stress and inflammation and; (3) hepatic morphology and glycogen content. Rats received intraperitoneally albumin modified (AlbAGE) or not by advanced glycation for 12 weeks. AlbAGE induced whole-body insulin resistance concomitantly with increased hepatic insulin sensitivity, evidenced by activation of AKT, inactivation of GSK3, increased hepatic glycogen content, and decreased expression of gluconeogenesis genes. Additionally there was reduction in hepatic fat content, in expression of lipogenic, pro-inflamatory and pro-oxidative genes and increase in reactive oxygen species and in nuclear expression of NRF2, a transcription factor essential to cytoprotective response. Although considered toxic, AGEs become protective when administered chronically, stimulating AKT signaling, which is involved in cellular defense and insulin sensitivity.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Hormese/efeitos dos fármacos , Resistência à Insulina , Fígado/metabolismo , Albuminas/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Produtos Finais de Glicação Avançada/administração & dosagem , Glicogênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Masculino , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
6.
Cell Physiol Biochem ; 40(3-4): 608-620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898405

RESUMO

AIM: To assess the renal effects of chronic exposure to advanced glycation end-products (AGEs) in the absence of diabetes and the potential impact of concomitant treatment with the antioxidant N-acetyl cysteine (NAC). METHODS: Wistar rats received intraperitoneally 20 mg/kg/day of albumin modified (AlbAGE) or not (AlbC) by advanced glycation for 12 weeks and oral NAC (600mg/L; AlbAGE+NAC and AlbC+NAC, respectively). Biochemical, urinary and renal morphological analyses; carboxymethyl-lysine (CML, an AGE), CD68 (macrophage infiltration), and 4-hydroxynonenal (4-HNE, marker of oxidative stress) immunostaining; intrarenal mRNA expression of genes belonging to pathways related to AGEs (Ager, Ddost, Nfkb1), renin-angiotensin system (Agt, Ren, Ace), fibrosis (Tgfb1, Col4a1), oxidative stress (Nox4, Txnip), and apoptosis (Bax, Bcl2); and reactive oxidative species (ROS) content were performed. RESULTS: AlbAGE significantly increased urine protein-to-creatinine ratio; glomerular area; renal CML content and macrophage infiltration; expression of Ager, Nfkb1, Agt, Ren, Tgfb1, Col4a1, Txnip, Bax/Bcl2 ratio; and 4-HNE and ROS contents. Some of these effects were attenuated by NAC concomitant treatment. CONCLUSION: Because AGEs are highly consumed in modern diets and implicated in the progression of different kidney diseases, NAC could be a therapeutic intervention to decrease renal damage, considering that long-term restriction of dietary AGEs is difficult to achieve in practice.


Assuntos
Acetilcisteína/farmacologia , Diabetes Mellitus Experimental/patologia , Produtos Finais de Glicação Avançada/toxicidade , Rim/patologia , Animais , Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...